红外热像仪,热成像,人体测温,机器人专用热像仪 EN
红外热像仪,热成像,人体测温,机器人专用热像仪
红外热像仪,热成像,人体测温,机器人专用热像仪
红外热像仪,热成像,人体测温,机器人专用热像仪 红外热像仪,热成像,人体测温,机器人专用热像仪
NEWS CENTER
首页 / 新闻中心
新闻中心
医用红外热像仪原理及发展历程
发布时间:2020-11-13来源:双视红外

医用红外热像仪原理及发展历程

 

  体温是重要的健康指标。从公元前400年开始,体温已用于临床诊断。人类作为一个恒温动物,能够不同于周围环境温度而维持体温的恒定。温度计产生于17世纪左右,经常用温度计来测量正常人体温的昼夜变化。1868年,Wunderlich首先系统地研究了发烧患者的体温,并与正常人进行了比较,从而确定了体温作为患病的科学指标。他认为,体温在36.3~37.5℃之间是正常的,超出该范围可能患病。1800年,Herschel爵士发现红外辐射,他的儿子约翰·赫歇尔拍摄的第一幅红外热成像为温度测量领域开辟了新的空间。1934年,Hardy团队阐述了人体红外辐射的生理作用,提出可将人体皮肤视为黑体辐射器。他确立了红外技术对温度测量的诊断意义,为红外热成像(InfraredThermography,IRT)技术在医学领域的应用铺平了道路。
  红外热成像技术将目标向外辐射的不可见红外能量转换成可见的伪彩色热图像,图像中不同的颜色表示不同的温度水平。红外热像仪的主要组成有:将红外能量聚焦到探测器上的光学器件,将红外能量转换为电信号的红外探测器阵列,按下自动调整按钮时执行图像校正的快门系统,以及处理电信号以生成辐射图像并进行温度计算的数字信号处理单元。温度测量的精度取决于发射率、环境温湿度、气流和距目标的距离等因素。

图为医用红外热像仪

 

  迄今,红外热像仪经历了三代发展。第一代摄像机使用一个单元素探测器和两个扫描镜来生成图像。他们遇到了白化(即高强度导致的饱和度)问题。第二代相机采用了两个扫描镜和一个大的线性阵列或小的二维阵列作为探测器,采用延时积分算法进行图像增强。第三代摄像机没有镜子,而具有大型焦平面阵列(FPA)探测器和图像处理芯片,从而提高了设备的可靠性和灵敏度。
  探测器是医用红外热像仪的核心。红外探测器分为两类:制冷型和非制冷型。固态系统的发展为新型探测器的生产铺平了道路,新型探测器具有更好的精度和分辨率。目前,非制冷相机的热灵敏度约为0.05℃,而制冷相机的热灵敏度为0.01℃。非制冷相机有许多优点,即高空间分辨率、高温度分辨率、紧凑性和便携性。Frederickson报道称,基于FPA的摄像机在工作距离和视场内的空间分辨率小于2mm(距离为1m上的200mm工作距离和视场至500mm工作距离和视场)。此外,它们重量轻,采用硅片技术制造,与制冷探测器相比成本低。这种现代数字非制冷红外热像仪极大地改善了医用红外热像仪,使得红外热成像技术在医学领域的研究与应用重新焕发生机。